PISM, A Parallel Ice Sheet Model  stable v1.2 committed by Constantine Khrulev on 2020-02-11 20:24:05 -0900
References
Notes
This large list collects all references which the PISM authors have found convenient. There is no claim that all of these references get direct use, or even mention, in the PISM project files.


  • AbramowitzStegun:
    M. Abramowitz and I. A. Stegun, editors, 1965. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Graduate Studies in Mathematics. Dover, New York.
  • Acheson:
    D. J. Acheson, 1990. Elementary Fluid Dynamics. Oxford University Press, Oxford.
  • Adalgeirsdottiretal2014:
    G. Adalgeirsdottir, A. Aschwanden, C. Khroulev, F. Boberg, R. Mottram, P. Lucas-Picher, and J. H. Christensen, 2014. Role of model initialization for projections of 21st-century Greenland ice sheet mass loss. J. Glaciol. 60 (222), 782–794. doi: 10.3189/2014JoG13J202.
  • AIAAGuidelines:
    AIAA, 1998. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations. Technical Report AIAA G-077-1998, American Institute of Aeronautics and Astronautics (AIAA).
  • AlbrechtLevermann2012:
    T. Albrecht and A. Levermann, 2012. Fracture field for large-scale ice dynamics. J. Glaciol. 58 (207), 165–176. doi: 10.3189/2012JoG11J191.
  • AlbrechtLevermann2014softening:
    T. Albrecht and A. Levermann, 2014. Fracture-induced softening for large-scale ice dynamics. The Cryosphere 8 (2), 587–605. doi: 10.5194/tc-8-587-2014. https://www.the-cryosphere.net/8/587/2014/.
  • AlbrechtLevermann2014adjacent:
    T. Albrecht and A. Levermann, 2014. Spontaneous ice-front retreat induced by disintegration of adjacent ice shelf in Antarctica. Earth Planet. Sci. Lett. 393, 26–30. doi: 10.1016/j.epsl.2014.02.034.
  • Albrechtetal2011:
    T. Albrecht, M. Martin, M. Haseloff, R. Winkelmann, and A. Levermann, 2011. Parameterization for subgrid-scale motion of ice-shelf calving fronts. The Cryosphere 5, 35–44.
  • AlonsoSantillanaDawson:
    R. Alonso, M. Santillana, and C. Dawson, 2008. On the diffusive wave approximation of the shallow water equations. Eur. J. Appl. Math. 19 (5), 575–606.
  • Amundsonetal2010:
    J. M. Amundson, M. Fahnestock, M. Truffer, J. Brown, M. P. Lüthi, and R. J. Motyka, 2010. Ice mèlange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland. J. Geophys. Res. 115. doi: 10.1029/2009JF001405. F01005.
  • AscherPetzold:
    U. Ascher and L. Petzold, 1998. Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations. SIAM Press, Philadelphia, PA.
  • AschwandenAdalgeirsdottirKhroulev:
    A. Aschwanden, G. Adalgeirsdòttir, and C. Khroulev, 2013. Hindcasting to measure ice sheet model sensitivity to initial states. The Cryosphere 7, 1083–1093. doi: 10.5194/tc-7-1083-2013.
  • AschwandenBlatter2005:
    A. Aschwanden and H. Blatter, 2005. Meltwater production due to strain heating in Storglaciären, Sweden. J. Geophys. Res. 110. doi: 10.1029/2005JF000328. F04024.
  • AschwandenBlatter:
    A. Aschwanden and H. Blatter, 2009. Mathematical modeling and numerical simulation of polythermal glaciers. J. Geophys. Res. 114. doi: 10.1029/2008JF001028. F01027.
  • AschwandenBuelerKhroulevBlatter:
    A. Aschwanden, E. Bueler, C. Khroulev, and H. Blatter, 2012. An enthalpy formulation for glaciers and ice sheets. J. Glaciol. 58 (209), 441–457. doi: 10.3189/2012JoG11J088.
  • Aschwanden2019:
    A. Aschwanden, M. A. Fahnestock, M. Truffer, D. C. Brinkerhoff, R. Hock, C. Khroulev, R. Mottram, and S. A. Khan, 2019. Contribution of the Greenland Ice Sheet to sea-level over the next millennium. Science Advances under review, 1.
  • Bak:
    P. Bak, 1999. How nature works: the science of self-organized criticality. Springer.
  • Bakerthesis2012:
    N. Baker, 2012. The influence of subglacial hydrology on the flow of West Antarctic ice streams. Ph.D. thesis, Trinity College, Scott Polar Research Institute, University of Cambridge.
  • petsc-efficient:
    S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, 1997. Efficient Management of Parallelism in Object Oriented Numerical Software Libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, 163–202. Birkhäuser Press.
  • petsc-user-ref:
    S. Balay et al., 2014. PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.5, Argonne National Laboratory.
  • Balesetal2001:
    R. Bales, J. McConnell, E. Mosley-Thompson, and G. Lamorey, 2001. Accumulation map for the Greenland Ice Sheet: 1971-1990. Geophys. Res. Lett 28 (15), 2967–2970. doi: 10.1029/2000GL012052.
  • BaliseRaymond1985:
    M. Balise and C. Raymond, 1985. Transfer of basal sliding variations to the surface of a linearly-viscous glacier. J. Glaciol. 31 (109), 308–318.
  • BamberLayberryGogenini:
    J. Bamber, R. Layberry, and S. Gogenini, 2001. A new ice thickness and bed data set for the Greenland ice sheet 1: Measurement, data reduction, and errors. J. Geophys. Res. 106 (D24), 33,773–33,780.
  • Bamberetal2013:
    J. L. Bamber et al., 2013. A new bed elevation dataset for Greenland. The Cryosphere 7 (2), 499–510. doi: 10.5194/tc-7-499-2013.
  • BamberVaughanJoughin:
    J. L. Bamber, D. G. Vaughan, and I. Joughin, 2000. Widespread complex flow in the interior of the Antarctic ice sheet. Science 287, 1248–1250.
  • Baraletal2001:
    D. R. Baral, K. Hutter, and R. Greve, 2001. Asymptotic theories of large-scale motion, temperature, and moisture distribution in land-based polythermal ice sheets: A critical review and new developments. Appl. Mech. Rev. 54 (3), 215–256. doi: 10.1115/1.3097296.
  • Barenblatt1952:
    G. I. Barenblatt, 1952. On some unsteady motions of fluids and gases in a porous medium. Prikl. Mat. Mekh. 16 (1), 67–78.
  • Barenblatt:
    G. I. Barenblatt, 1996. Scaling, Self-similarity and Intermediate Asymptotics. Cambridge Univ. Press.
  • Bartholomausetal2008:
    T. C. Bartholomaus, R. S. Anderson, and S. P. Anderson, 2008. Response of glacier basal motion to transient water storage. Nature Geosci. 1, 33–37. doi: 10.1038/ngeo.2007.52.
  • Bartholomausetal2011:
    T. C. Bartholomaus, R. S. Anderson, and S. P. Anderson, 2011. Growth and collapse of the distributed subglacial hydrologic system of Kennicott Glacier, Alaska, USA, and its effects on basal motion. J. Glaciol. 57 (206), 985–1002.
  • Batchelor:
    G. Batchelor, 1967. An Introduction to Fluid Dynamics. Cambridge Univ. Press.
  • RIGGS2:
    C. R. Bentley, 1984. Glaciological studies on the Ross Ice Shelf, Antarctica, 1973–1978. Antarctic Research Series 42 (2), 21–53.
  • RIGGS1:
    C. R. Bentley, 1984. The Ross Ice shelf Geophysical and Glaciological Survey (RIGGS): Introduction and summary of measurments performed. Antarctic Research Series 42 (1), 1–20.
  • Bindschadler2013SeaRISE:
    R. Bindschadler et al., 2013. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea-level (The SeaRISE Project). J. Glaciol 59 (214), 195–224.
  • Blatter:
    H. Blatter, 1995. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol. 41 (138), 333–344.
  • BlatterGreve2015:
    H. Blatter and R. Greve, 2015. Comparison and verification of enthalpy schemes for polythermal glaciers and ice sheets with a one-dimensional model. Polar Science 9 (2), 196–207.
  • Bodvardsson:
    G. Bodvardsson, 1955. On the flow of ice-sheets and glaciers. Jökull 5, 1–8.
  • Bougamontetal2011:
    M. Bougamont, S. Price, P. Christoffersen, and A. Payne, 2011. Dynamic patterns of ice stream flow in a 3-D higher-order ice sheet model with plastic bed and simplified hydrology. J. Geophys. Res.: Earth Surface 116 (F4).
  • BoxSteffan2001:
    J. E. Box and K. Steffen, 2001. Sublimation on the Greenland ice sheet from automated weather station observations. J. Geophys. Res. 106 (D24), 33965–33981.
  • Bracewell:
    R. N. Bracewell, 1978. The Fourier Transform and Its Applications. McGraw-Hill Book Company, New York, 2nd edition.
  • Braess:
    D. Braess, 2007. Finite Elements: Theory, fast solvers, and applications in elasticity theory. Cambridge University Press, 3rd edition.
  • BriggsHenson:
    W. L. Briggs and V. E. Henson, 1995. The DFT: An Owner's Manual for the Discrete Fourier Transform. SIAM Press, Philadelphia.
  • LeBrocqPayneSiegert2006:
    A. M. L. Brocq, A. J. Payne, and M. J. Siegert, 2006. West Antarctic balance calculations: Impact of flux-routing algorithm, smoothing algorithm and topography. Computers & Geosciences 32 (10), 1780–1795. doi: 10.1016/j.cageo.2006.05.003. http://www.sciencedirect.com/science/article/pii/S0098300406000781.
  • Broughan:
    K. Broughan, 1997. Periodicity in an energy balance climate model. Nonlinear Analysis 30 (8), 4995–5002.
  • Brown2010:
    J. Brown, 2010. Efficient nonlinear solvers for nodal high-order finite elements in 3D. J. Sci. Comput. 45, 48–63. doi: 10.1007/s10915-010-9396-8.
  • BrownSmithAhmadia2013:
    J. Brown, B. Smith, and A. Ahmadia, 2013. Achieving textbook multigrid efficiency for hydrostatic ice sheet flow. SIAM J. Sci. Comp. 35 (2), B359–B375.
  • BrownChurchill:
    J. W. Brown and R. V. Churchill, 2000. Fourier Series and Boundary Value Problems. McGraw-Hill, 6th edition.
  • Bueler:
    E. Bueler, 2002. Numerical approximation of a two–dimensional thermomechanical model for ice flow. Dept. of Mathematical Sciences Tech. Rep. 02-02, University of Alaska, Fairbanks.
  • BuelerTestK:
    E. Bueler, 2007. An exact solution to the temperature equation in a column of ice and bedrock. Preprint arXiv:0710.1314 .
  • Bueler2014correspondence:
    E. Bueler, 2014. Correspondence: Extensions of the lumped subglacial-englacial hydrology model of Bartholomaus and others (2011). J. Glaciol. 60 (222), 808–810.
  • Bueler2014exactmarine:
    E. Bueler, 2014. An exact solution for a steady, flow-line marine ice sheet. J. Glaciol. 60 (224), 1117–1125.
  • BB:
    E. Bueler and J. Brown, 2006. On exact solutions and numerics for cold, shallow, and thermocoupled ice sheets. Preprint arXiv:physics/0610106 .
  • BBssasliding:
    E. Bueler and J. Brown, 2009. Shallow shelf approximation as a "sliding law" in a thermodynamically coupled ice sheet model. J. Geophys. Res. 114. doi: 10.1029/2008JF001179. F03008.
  • BBL:
    E. Bueler, J. Brown, and C. Lingle, 2007. Exact solutions to the thermomechanically coupled shallow ice approximation: effective tools for verification. J. Glaciol. 53 (182), 499–516.
  • BKAJS:
    E. Bueler, C. Khroulev, A. Aschwanden, I. Joughin, and B. E. Smith, 2009. Modeled and observed fast flow in the Greenland ice sheet. Submitted.
  • BLK2006earth:
    E. Bueler, C. S. Lingle, and J. A. Kallen-Brown, 2006. Computation of a combined spherical-elastic and viscous-half-space Earth model for ice sheet simulation. Preprint arXiv:physics/0606074 .
  • BLKfastearth:
    E. Bueler, C. S. Lingle, and J. A. Kallen-Brown, 2007. Fast computation of a viscoelastic deformable Earth model for ice sheet simulation. Ann. Glaciol. 46, 97–105.
  • BLKCB:
    E. Bueler, C. S. Lingle, J. A. Kallen-Brown, D. N. Covey, and L. N. Bowman, 2005. Exact solutions and numerical verification for isothermal ice sheets. J. Glaciol. 51 (173), 291–306.
  • BuelervanPelt2015:
    E. Bueler and W. van Pelt, 2015. Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6. Geoscientific Model Development 8 (6), 1613–1635. doi: 10.5194/gmd-8-1613-2015.
  • BurdenFaires:
    R. L. Burden and J. D. Faires, 2001. Numerical Analysis. Brooks/Cole, Pacific Grove, CA, seventh edition.
  • Burgessetal2010:
    E. Burgess, R. Forster, J. Box, E. Mosley-Thompson, D. Bromwich, R. Bales, and L. Smith, 2010. A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958–2007). J. Geophys. Res. 115 (F02004). doi: 10.1029/2009JF001293.
  • CalovGreve05:
    R. Calov and R. Greve, 2005. Correspondence: A semi-analytical solution for the positive degree-day model with stochastic temperature variations. J. Glaciol 51 (172), 173–175.
  • Calovetal2009HEINOfinal:
    R. Calov, R. Greve, A. Abe-Ouchi, E. Bueler, P. Huybrechts, J. V. Johnson, F. Pattyn, D. Pollard, C. Ritz, F. Saito, and L. Tarasov, 2010. Results from the ice sheet model intercomparison project—Heinrich event intercomparison (ISMIP HEINO). J. Glaciol 56 (197), 371–383.
  • CDV99:
    N. Calvo, J. Dìaz, and C. Vàzquez, 1999. Numerical approach of temperature distribution in a free boundary model for polythermal ice sheets. Numer. Math. 83, 557–580.
  • CDV00:
    N. Calvo, J. Durany, and C. Vàzquez, 2000. Numerical computation of ice sheet profiles with free boundary models. Appl. Numer. Math. 35, 111–128.
  • CDV02:
    N. Calvo, J. Durany, and C. Vàzquez, 2002. Numerical approach of thermomechanical coupled problems with moving boundaries in theoretical glaciology. Math. Models and Methods in Appl. Sci. 12 (2), 229–248.
  • CareyetalError04:
    G. F. Carey et al., 2004. Modelling error and constitutive relations in simulation of flow and transport. Int. J. Numer. Meth. Fluids 46, 1211–1236.
  • Cathles:
    L. M. Cathles, 1975. The Viscosity of the Earth's Mantle. Princeton University Press, Princeton, NJ.
  • DeLaChapelleEtAl98:
    S. D. L. Chapelle, O. Castelnau, V. Lipenkov, and P. Duval, 1998. Dynamic recrystallization and texture development in ice as revealed by the study of deep cores in Antarctica and Greenland. J. Geophys. Res. 103 (B3), 5091–5105.
  • Ciarlet:
    P. G. Ciarlet, 2002. The Finite Element Method for Elliptic Problems. SIAM Press. Reprint of the 1978 original.
  • ClarkAlleyPollard1999:
    P. U. Clark, R. B. Alley, and D. Pollard, 1999. Northern Hemisphere ice-sheet influences on global climate change. Science 286 (5442), 1104–1111. doi: 10.1126/science.286.5442.1104.
  • Clarke2003:
    G. K. Clarke, 2003. Hydraulics of subglacial outburst floods: new insights from the Spring-Hutter formulation. J. Glaciol. 49 (165), 299–313. doi: 10.3189/172756503781830728.
  • Clarke05:
    G. K. C. Clarke, 2005. Subglacial processes. Annu. Rev. Earth Planet. Sci. 33, 247–276. doi: 10.1146/annurev.earth.33.092203.122621.
  • CliffeMorland:
    K. Cliffe and L. Morland, 2001. A thermo-mechanically coupled test case for axi-symmetric ice sheet flow. Continuum Mechanics and Thermodynamics 13, 135–148.
  • Cogley2011:
    J. Cogley, R. Hock, L. Rasmussen, A. Arendt, A. Bauder, R. Braithwaite, P. Jansson, G. Kaser, M. Möller, L. Nicholson, et al., 2011. Glossary of glacier mass balance and related terms. IHP-VII technical documents in hydrology 86, 965.
  • ColingeRappaz:
    J. Colinge and J. Rappaz, 1999. A strongly nonlinear problem arising in glaciology. M2AN Math. Model. Numer. Anal. 33 (2), 395–406.
  • Comiso:
    J. Comiso, 2000. Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Climate 13, 1674–1696.
  • Cornfordetal2013:
    S. Cornford, D. Martin, D. Graves, D. Ranken, A. L. Brocq, R. Gladstone, A. Payne, E. Ng, and W. Lipscomb, 2013. Adaptive mesh, finite volume modeling of marine ice sheets. J. Computational Physics 232 (1), 529 – 549. doi: 10.1016/j.jcp.2012.08.037.
  • CreytsSchoof2009:
    T. Creyts and C. Schoof, 2009. Drainage through subglacial water sheets. J. Geophys. Res. 114 (F04008). doi: 10.1029/2008JF001215.
  • CuffeyPaterson:
    K. M. Cuffey and W. S. B. Paterson, 2010. The Physics of Glaciers. Elsevier, 4th edition.
  • Dansgaardetal1993:
    W. Dansgaard et al., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220.
  • Dasetal08:
    S. B. Das, I. Joughin, M. D. Behn, I. M. Howat, M. A. King, D. Lizarralde, and M. P. Bhatia, 2008. Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage. Science 320 (5877), 778–781. doi: 10.1126/science.1153360.
  • deFleurianetal2014:
    B. de Fleurian, O. Gagliardini, T. Zwinger, G. Durand, E. Le Meur, D. Mair, and P. R\aaback, 2014. A double continuum hydrological model for glacier applications. The Cryosphere 8 (1), 137–153. doi: 10.5194/tc-8-137-2014. https://www.the-cryosphere.net/8/137/2014/.
  • DeFooretal2011:
    W. DeFoor, M. Person, H. C. Larsen, D. Lizarralde, D. Cohen, and B. Dugan, 2011. Ice sheet-derived submarine groundwater discharge on Greenland's continental shelf. Water Resour. Res. 47 (W07549). doi: 10.1029/2011WR010536.
  • DellaGiustina2011:
    D. DellaGiustina, 2011. Regional modeling of Greenland's outlet glaciers with the Parallel Ice Sheet Model. Master's thesis, University of Alaska, Fairbanks. M.S. Computational Physics.
  • VandenBergetal2006:
    J. V. den Berg, R. S. W. V. de Wal, and J. Oerlemans, 2006. Effects of spatial discretization in ice-sheet modelling using the shallow-ice approximation. J. Glaciol. 52 (176), 89–98.
  • denOuden2010:
    M. A. G. den Ouden, C. H. Reijmer, V. Pohjola, R. S. W. van de Wal, J. Oerlemans, and W. Boot, 2010. Stand-alone single-frequency GPS ice velocity observations on Nordenskiöldbreen, Svalbard. The Cryosphere 4 (4), 593–604. doi: 10.5194/tc-4-593-2010. https://www.the-cryosphere.net/4/593/2010/.
  • DiBenedetto:
    E. DiBenedetto, 1993. Degenerate Parabolic Equations. Springer-Verlag, Berlin.
  • DickensMorey2013:
    P. Dickens and T. Morey, 2013. Increasing the scalability of PISM for high resolution ice sheet models. In Proceedings of the 14th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing, May 2013, Boston.
  • Dukowiczetal2010:
    J. K. Dukowicz, S. F. Price, and W. H. Lipscomb, 2010. Consistent approximations and boundary conditions for ice-sheet dynamics from a principle of least action. Journal of Glaciology 56 (197), 480–496. doi: 10.3189/002214310792447851.
  • DuvautLions:
    G. Duvaut and J. L. Lions, 1976. Inequalities in Mechanics and Physics. Springer.
  • Edwards2014:
    T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, a. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz, jan 2014. Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet. The Cryosphere 8 (1), 181–194. ISSN 1994-0424. doi: 10.5194/tc-8-181-2014. https://www.the-cryosphere.net/8/181/2014/.
  • Egholmetal2011:
    D. Egholm, M. Knudsen, C. Clark, and J. Lesemann, 2011. Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation (iSOSIA). J. Geophys. Res.: Earth Surface 116 (F2). doi: 10.1029/2010JF001900.
  • EgholmNielsen2010:
    D. Egholm and S. Nielsen, 2010. An adaptive finite volume solver for ice sheets and glaciers. J. Geophys. Res.: Earth Surface 115 (F1). doi: 10.1029/2009JF001394.
  • Eisen2008:
    O. Eisen, 2008. Inference of velocity pattern from isochronous layers in firn, using an inverse method. J. Glaciol. 54 (187), 613–630.
  • Elmanetal2005:
    H. C. Elman, D. J. Silvester, and A. J. Wathen, 2005. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University Press.
  • VostokCore:
    EPICA community members, 2004. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628. doi: 10.1038/nature02599.
  • ERCOFTACGuidelines:
    ERCOFTAC, 2000. Best Practices Guidelines for Industrial Computational Fluid Dynamics. Technical report, European Research Community On Flow, Turbulence And Combustion (ERCOFTAC). Version 1.0.
  • Ettemaetal2009:
    J. Ettema, M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. L. Bamber, J. E. Box, and R. C. Bales, 2009. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Let. 36 (L12501). doi: 10.1029/2009GL038110.
  • Evans:
    L. C. Evans, 1998. Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society.
  • Fahnestocketal2001:
    M. Fahnestock, W. Abdalati, I. Joughin, J. Brozena, and P. Gogineni, 2001. High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science 294, 2338–2342.
  • Farrell:
    W. E. Farrell, 1972. Deformation of the earth by surface loads. Rev. Geophysics and Space Physics 10 (3), 761–797.
  • Fastook:
    J. L. Fastook, 1999. A computationally efficient bedrock isostacy model. Unpublished.
  • Faustoetal2009:
    R. S. Fausto, A. P. Ahlstrom, D. V. As, C. E. Boggild, and S. J. Johnsen, 2009. A new present-day temperature parameterization for Greenland. J. Glaciol. 55 (189), 95–105.
  • Feldmannetal2014:
    J. Feldmann, T. Albrecht, C. Khroulev, F. Pattyn, and A. Levermann, 2014. Resolution-dependent performance of grounding line motion in a shallow model compared to a full-Stokes model according to the MISMIP3d intercomparison. J. Glaciol. 60 (220), 353–360. doi: 10.3189/2014JoG13J093.
  • FlowersClarke2002_theory:
    G. E. Flowers and G. K. C. Clarke, 2002. A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples. J. Geophys. Res. 107 (B11), 2287. doi: 10.1029/2001JB001122.
  • FlowersClarke2002_trapridge:
    G. E. Flowers and G. K. C. Clarke, 2002. A multicomponent coupled model of glacier hydrology 2. Application to Trapridge Glacier, Yukon, Canada. J. Geophys. Res. 107 (B11), 2288. doi: 10.1029/2001JB001124.
  • Flowersetal2005:
    G. E. Flowers, S. J. Marshall, H. Björnsson, and G. K. C. Clarke, 2005. Sensitivity of Vatnajökull ice cap hydrology and dynamics to climate warming over the next 2 centuries. J. Geophys. Res. 110 (F02011). doi: 10.1029/2004JF000200.
  • FoldvikKvinge1974:
    A. Foldvik and T. Kvinge, 1974. Conditional instability of sea water at the freezing point. In Deep Sea Research and Oceanographic Abstracts, volume 21, 169–174. Elsevier.
  • FongSaunders2011:
    D. Fong and M. Saunders, 2011. LSMR: An iterative algorithm for sparse least-squares problems. SIAM J. Sci. Computing 33 (5), 2950–2971.
  • Fowler1992:
    A. C. Fowler, 1992. Modelling ice sheet dynamics. Geophysical & Astrophysical Fluid Dynamics 63, 29–65.
  • Fowler97A:
    A. C. Fowler, 1997. Glaciers and ice sheets. In J. I. Dìaz, editor, The Mathematics of Models for Climatology and Environment, volume 48, 301–336. Springer.
  • Fowler:
    A. C. Fowler, 1997. Mathematical Models in the Applied Sciences. Cambridge Univ. Press.
  • Fowler01:
    A. C. Fowler, 2001. Modelling the flow of glaciers and ice sheets. In B. Straughan et al., editors, Continuum Mechanics and Applications in Geophysics and the Environment, 201–221. Springer.
  • FowlerLarson1978:
    A. C. Fowler and D. A. Larson, 1978. On the flow of polythermal glaciers. I. Model and preliminary analysis. Proc. R. Soc. Lond. A 363, 217–242.
  • Friedman:
    A. Friedman, 1982. Variational inequalities and free boundary problems. Wiley Interscience.
  • HOMelmer:
    O. Gagliardini and T. Zwinger, 2008. The ISMIP-HOM benchmark experiments performed using the Finite-Element code Elmer. The Cryosphere 2 (1), 67–76. https://www.the-cryosphere.net/2/67/2008/.
  • GilletChauletetal2005:
    F. Gillet-Chaulet et al., 2005. A user-friendly anisotropic flow law for ice-sheet modelling. J. Glaciol. 51 (172), 3–14.
  • Gladstoneetal2010:
    R. M. Gladstone, A. J. Payne, and S. L. Cornford, 2010. Parameterising the grounding line in flow-line ice sheet models. The Cryosphere 4, 605–619. doi: 10.5194/tc-4-605-2010.
  • Glen:
    J. W. Glen, 1955. The creep of polycrystalline ice. Proc. Royal Soc. London A 228, 519–538.
  • GlowinskiRappaz:
    R. Glowinski and J. Rappaz, 2003. Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. M2AN Math. Model. Numer. Anal. 37 (1), 175–186.
  • Goelleretal2013:
    S. Goeller, M. Thoma, K. Grosfeld, and H. Miller, 2013. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models. The Cryosphere 7 (4), 1095–1106.
  • Goldberg2011:
    D. Goldberg, 2011. A variationally derived, depth-integrated approximation to a higher-order glaciological flow model. J. Glaciol. 57 (201), 157–170.
  • Goldbergetal2009:
    D. Goldberg, D. M. Holland, and C. Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets. J. Geophys. Res. 114 (F04026). doi: 10.1029/2008JF001227.
  • GoldsbyKohlstedt97:
    D. L. Goldsby and D. L. Kohlstedt, 1997. Grain boundary sliding in fine-grained ice I. Scripta Materialia 37 (9), 1399–1406.
  • GoldsbyKohlstedt:
    D. L. Goldsby and D. L. Kohlstedt, 2001. Superplastic deformation of ice: experimental observations. J. Geophys. Res. 106 (M6), 11017–11030.
  • Golledgeetal2012ant:
    N. Golledge, C. Fogwill, A. Mackintosh, and K. Buckley, 2012. Dynamics of the Last Glacial Maximum Antarctic ice-sheet and its response to ocean forcing. Proc. Nat. Acad. Sci. 109 (40), 16052–16056. doi: 10.1073/pnas.1205385109.
  • Golledgeetal2012:
    N. Golledge, A. Mackintosh, et al., 2012. Last Glacial Maximum climate in New Zealand inferred from a modelled Southern Alps icefield. Quaternary Science Reviews 46, 30–45. doi: 10.1016/j.quascirev.2012.05.004.
  • Golledgeetal2013:
    N. Golledge et al., 2013. Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet. Quaternary Sci. Rev. 78 (0), 225–247. doi: 10.1016/j.quascirev.2013.08.011.
  • Golledgeetal2014:
    N. R. Golledge, L. Menviel, L. Carter, C. J. Fogwill, M. H. England, G. Cortese, and R. H. Levy, 2014. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nature Communications 5. doi: 10.1038/ncomms6107.
  • GolubVanLoan:
    G. Golub and C. Van Loan, 2012. Matrix Computations. JHU Press, 4th edition.
  • GraeserKornhuber2009:
    C. Gräser and R. Kornhuber, 2009. Multigrid methods for obstacle problems. J. Comp. Math. 27 (1), 1–44.
  • Greenbaum1997:
    A. Greenbaum, 1997. Iterative Methods for Solving Linear Systems. SIAM Press.
  • Greve97Greenland:
    R. Greve, 1997. Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: Response to steady-state and transient climate scenarios. J. Climate 10 (5), 901–918.
  • Greve:
    R. Greve, 1997. A continuum–mechanical formulation for shallow polythermal ice sheets. Phil. Trans. Royal Soc. London A 355, 921–974.
  • Greve00:
    R. Greve, 2000. On the response of the Greenland ice sheet to greenhouse climate change. Climatic Change 46, 289–303.
  • Greve2001:
    R. Greve, 2001. Glacial isostasy: Models for the response of the Earth to varying ice loads. In B. Straughan et al., editors, Continuum Mechanics and Applications in Geophysics and the Environment, 307–325. Springer.
  • GreveNotes:
    R. Greve, 2005. Dynamics of Ice Sheets and Glaciers. Lecture notes Sapporo.
  • Greve2005geothermal:
    R. Greve, 2005. Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet. Ann. Glaciol. 42, 424–432.
  • GreveBlatter2009:
    R. Greve and H. Blatter, 2009. Dynamics of Ice Sheets and Glaciers. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer.
  • GreveTakahamaCalov:
    R. Greve, R. Takahama, and R. Calov, 2006. Simulation of large-scale ice-sheet surges: The ISMIP-HEINO experiments. Polar Meteorol. Glaciol. 20, 1–15.
  • GreveWangMuegge2002:
    R. Greve, Y. Wang, and B. Mügge, 2002. Comparison of numerical schemes for the solution of the advective age equation in ice sheets. Ann. Glaciol. 35, 487–494.
  • Groppetal1999:
    W. Gropp, E. Lusk, and A. Skjellum, 1999. Using MPI: Portable Parallel Programming with the Message-Passing Interface. MIT Press, 2nd edition.
  • GrosfeldThyssen1994:
    K. Grosfeld and F. Thyssen, 1994. Temperature investigation and modeling on the Filchner-Ronne Ice Shelf, Antarctica. Ann. Glaciol. 20, 377–385.
  • Gudmundsson03:
    G. H. Gudmundsson, 2003. Transmission of basal variability to a glacier surface. J. Geophys. Res. 108 (B5). doi: 10.1029/2002JB002107.
  • Gudmundsson09:
    G. H. Gudmundsson, 2008. Analytical solutions for the surface response to small amplitude perturbations in boundary data in the shallow-ice-stream approximation. The Cryosphere 2 (2), 77–93.
  • Habermannetal2012:
    M. Habermann, D. Maxwell, and M. Truffer, 2012. Reconstruction of basal properties in ice sheets using iterative inverse methods. J. Glaciol. 58, 795–807.
  • Habermannetal2013:
    M. Habermann, M. Truffer, and D. Maxwell, 2013. Changing basal conditions during the speed-up of Jakobshavn Isbrae, Greenland. The Cryosphere 7 (6), 1679–1692. doi: 10.5194/tc-7-1679-2013.
  • Hadamard02:
    J. Hadamard, 1902. Sur les problémes aux dèrivès partielles et leur signification physique. Princeton University Bulletin 13, 49–52.
  • HagdornThesis:
    M. K. M. Hagdorn, 2003. Reconstruction of the past and forecast of the future European and British ice sheets and associated sea level change. Ph.D. thesis, The University of Edinburgh.
  • Halfar81:
    P. Halfar, 1981. On the dynamics of the ice sheets. J. Geophys. Res. 86 (C11), 11065–11072.
  • Halfar83:
    P. Halfar, 1983. On the dynamics of the ice sheets 2. J. Geophys. Res. 88 (C10), 6043–6051.
  • Hanke:
    M. Hanke, 1995. Conjugate Graident Type Methods for Ill-posed Problems, volume 327 of Pitman Research Notes in Mathematics. Longman Scientific & Technical.
  • Harperetal2010:
    J. Harper, J. Bradford, N. Humphrey, and T. Meierbachtol, 2010. Vertical extension of the subglacial drainage system into basal crevasses. Nature 467 (7315), 579–582. doi: 10.1038/nature09398.
  • HellmerOlbers1989:
    H. Hellmer and D. Olbers, 1989. A two-dimensional model for the thermohaline circulation under an ice shelf. Antarctic Science 1 (04), 325–336.
  • Hellmeretal1998:
    H. H. Hellmer, S. S. Jacobs, and A. Jenkins, 1998. Oceanic erosion of a floating Antarctic glacier in the Amundsen Sea. American Geophysical Union.
  • Hewitt2011:
    I. J. Hewitt, 2011. Modelling distributed and channelized subglacial drainage: the spacing of channels. J. Glaciol. 57 (202), 302–314.
  • Hewitt2013:
    I. J. Hewitt, 2013. Seasonal changes in ice sheet motion due to melt water lubrication. Earth Planet. Sci. Lett. 371–372, 16–25. doi: 10.1016/j.epsl.2013.04.022.
  • Hewittetal2012:
    I. J. Hewitt, C. Schoof, and M. A. Werder, 2012. Flotation and free surface flow in a model for subglacial drainage. Part II: Channel flow. J. Fluid Mech. 702, 157–188.
  • HighamTrefethen1993:
    D. Higham and L. N. Trefethen, 1993. Stiffness of ODEs. BIT 33, 285–303.
  • Hindmarsh1983ODEPACK:
    A. C. Hindmarsh, 1983. ODEPACK, A Systematized Collection of ODE Solvers. IMACS Transactions on Scientific Computation 1, 55–64. Edited by Stepleman et al.
  • Hindmarshetal2009:
    R. Hindmarsh, G. L. Vieli, , and F. Parrenin, 2009. A large-scale numerical model for computing isochrone geometry. Ann. Glaciol. 50 (51), 130–140.
  • Hindmarsh:
    R. C. A. Hindmarsh, 1990. Time–scales and degrees of freedom operating in the evolution of continental ice sheets. Trans. R. Soc. Edinburgh, Ser. Earth Sci. 81 (4), 371–384.
  • Hindmarsh01:
    R. C. A. Hindmarsh, 2001. Notes on basic glaciological computational methods and algorithms. In B. Straughan et al., editors, Continuum Mechanics and Applications in Geophysics and the Environment, 222–249. Springer.
  • Hindmarsh04compare:
    R. C. A. Hindmarsh, 2004. A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling. J. Geophys. Res. 109. doi: 10.1029/2003JF000065.
  • Hindmarsh04:
    R. C. A. Hindmarsh, 2004. Thermoviscous stability of ice-sheet flows. J. Fluid Mech. 502, 17–40.
  • HindmarshMembrane:
    R. C. A. Hindmarsh, 2006. The role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice sheets: back pressure and grounding line motion. Phil. Trans. R. Soc. A 364, 1733–1767. doi: 10.1098/rsta.2006.1797.
  • Hindmarsh06:
    R. C. A. Hindmarsh, 2006. Stress gradient damping of thermoviscous ice flow instabilities. J. Geophys. Res. 111 (B12409). doi: 10.1029/2005JB004019.
  • HindmarshPayne:
    R. C. A. Hindmarsh and A. J. Payne, 1996. Time–step limits for stable solutions of the ice–sheet equation. Ann. Glaciol. 23, 74–85.
  • Hock05:
    R. Hock, 2005. Glacier melt: a review of processes and their modelling. Prog. Phys. Geog. 29 (3), 362–391.
  • Hock2005b:
    R. Hock and B. Holmgren, 2005. A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden. J. Glaciol. 51 (172), 25–36.
  • HollandJenkins1999:
    D. M. Holland and A. Jenkins, 1999. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. Journal of Physical Oceanography 29 (8), 1787–1800.
  • Hollandetal2008:
    D. M. Holland, R. H. Thomas, B. de Young, M. H. Ribergaard, and B. Lyberth, 2008. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geoscience 1, 659–664. doi: 10.1038/ngeo316.
  • HolmlundJanssonPettersson2005:
    P. Holmlund, P. Jansson, and R. Pettersson, 2005. A re-analysis of the 58 year mass-balance record of Störglaciaren, Sweden. Ann. Glaciol. 42, 389–394.
  • Hooke:
    R. Hooke, 1981. Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. Rev. Geophys. Space. Phys. 19 (4), 664–672.
  • Hookeetal1997:
    R. Hooke, B. Hanson, N. Iverson, P. Jansson, and U. Fischer, 1997. Rheology of till beneath Störglaciaren, Sweden. J. Glaciol. 43 (143), 172–179.
  • HowatJoughinScambos:
    I. M. Howat, I. Joughin, and T. A. Scambos, 2007. Rapid changes in ice discharge from Greenland outlet glaciers. Science 315 (5818), 1559–1561. doi: 10.1126/science.1138478.
  • HulbeMacAyeal:
    C. L. Hulbe and D. R. MacAyeal, 1999. A new numerical model of coupled inland ice sheet, ice stream, and ice shelf flow and its application to the West Antarctic Ice Sheet. J. Geophys. Res. 104 (B11), 25349–25366.
  • HumbertGreveHutter:
    A. Humbert, R. Greve, and K. Hutter, 2005. Parameter sensitivity studies for the ice flow of the Ross Ice Shelf, Antarctica. J. Geophys. Res. 110 (F04022). doi: 10.1029/2004JF000170.
  • HundsdorferVerwer2010:
    W. Hundsdorfer and J. G. Verwer, 2010. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics. Springer.
  • HunkeDukowicz97:
    E. Hunke and J. Dukowicz, 1997. An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr. 27, 1849–1867.
  • Hutter:
    K. Hutter, 1983. Theoretical Glaciology. D. Reidel.
  • Hutter93:
    K. Hutter, 1993. Thermomechanically coupled ice–sheet response: cold, polythermal, temperate. J. Glaciology 39 (131), 65–86.
  • HutterFreeBoundary:
    K. Hutter, 1999. Mathematical foundation of ice sheet and ice shelf dynamics: A physicist's view. In I. Athanasopoulos et al., editors, Free Boundary Problems: Theory and Applications, 192–203. Chapman & Hall.
  • Huybrechts90:
    P. Huybrechts, 1990. A 3–D model for the Antarctic ice sheet: a sensitivity study on the glacial–interglacial contrast. Climate Dynamics 5, 79–92.
  • Huybrechts02:
    P. Huybrechts, 2002. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev. 21, 203–231.
  • HuybrechtsdeWolde:
    P. Huybrechts and J. de Wolde, 1999. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Climate 12, 2169–2188.
  • Huybrechtsetal2004:
    P. Huybrechts, J. Gregory, I. Janssens, and M. Wild, 2004. Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Global and Planetary Change 42, 83–105.
  • EISMINT96:
    P. Huybrechts et al., 1996. The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol. 23, 1–12.
  • Imbrieetal1984:
    J. Imbrie et al., 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine delta-O-18 record. In Milankovitch and Climate: Understanding the Response to Astronomical Forcing, 269–305. D. Reidel.
  • IvinsJames2005:
    E. R. Ivins and T. S. James, 2005. Antarctic glacial isostatic adjustment: a new assessment. Antarctic Science 17 (4), 537–549.
  • Jakobssonetal2008:
    M. Jakobsson, R. Macnab, L. Mayer, R. Anderson, M. Edwards, J. Hatzky, H. Schenke, and P. Johnson, 2008. An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys. Res. Lett. 35 (7). https://www.ngdc.noaa.gov/mgg/bathymetry/arctic/.
  • JamesIvins1998:
    T. S. James and E. R. Ivins, 1998. Predictions of Antarctic crustal motions driven by present-day ice sheet evolution and by isostatic memory of the Last Glacial Maximum. J. Geophys. Res. 103, 4993–5017.
  • JanssonPettersson2007:
    P. Jansson and R. Pettersson, 2007. Spatial and temporal characteristics of a long mass balance record, Störglaciaren, Sweden. Arctic, Antarctic and Alpine Research 39 (3), 432–437.
  • Jarosch2008:
    A. H. Jarosch, 2008. Icetools: a full Stokes finite element model for glaciers. Computers & Geosciences 34, 1005–1014. doi: 10.1016/j.cageo.2007.06.012.
  • JaroschSchoofAnslow2013:
    A. H. Jarosch, C. G. Schoof, and F. S. Anslow, 2013. Restoring mass conservation to shallow ice flow models over complex terrain. The Cryosphere 7 (1), 229–240. doi: 10.5194/tc-7-229-2013.
  • Jenssen:
    D. Jenssen, 1977. A three–dimensional polar ice–sheet model. J. Glaciol. 18, 373–389.
  • Jezek03:
    K. Jezek, 2003. Observing the Antarctic ice sheet using the RADARSAT-1 synthetic aperture radar. Polar Geography 27 (3), 197–209.
  • JohnsenetalGRIP:
    S. J. Johnsen, D. Dahl-Jensen, W. Dansgaard, and N. Gundestrup, 1995. Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus 47B, 624–629.
  • Johnson:
    C. Johnson, 1992. Numerical solution of partial differential equations by the finite element method. Cambridge University Press.
  • JohnsonFastook:
    J. Johnson and J. L. Fastook, 2002. Northern Hemisphere glaciation and its sensitivity to basal melt water. Quat. Int. 95, 65–74.
  • scipy:
    E. Jones, T. Oliphant, P. Peterson, et al., 2001–. SciPy: Open source scientific tools for Python. https://www.scipy.org/.
  • Joughin2002:
    I. Joughin, 2002. Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach. Ann. Glaciol. 34, 195–201.
  • JoughinAbdalatiFahnestock:
    I. Joughin, W. Abdalati, and M. Fahnestock, 2004. Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier. Nature 432 (23), 608–610.
  • Joughinetal08:
    I. Joughin, S. B. Das, M. A. King, B. E. Smith, I. M. Howat, and T. Moon, 2008. Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet. Science 320 (5877), 781–783. doi: 10.1126/science.1153288. http://science.sciencemag.org/content/320/5877/781.
  • JoughinetalGrBal97:
    I. Joughin, M. Fahnestock, S. Ekholm, and R. Kwok, 1997. Balance velocities of the Greenland ice sheet. Geophysical Research Letters 24 (23), 3045–3048.
  • Joughinetal1999northGreenland:
    I. Joughin, M. Fahnestock, R. Kwok, P. Gogineni, and C. Allen, 1999. Ice flow of Humboldt, Petermann and Ryder Gletcher, northern Greenland. J. Glaciol. 45 (150), 231–241.
  • Joughinetal2001:
    I. Joughin, M. Fahnestock, D. MacAyeal, J. L. Bamber, and P. Gogineni, 2001. Observation and analysis of ice flow in the largest Greenland ice stream. J. Geophys. Res. 106 (D24), 34021–34034.
  • Joughinetal2008JGR:
    I. Joughin, I. M. Howat, M. Fahnestock, B. Smith, W. Krabill, R. B. Alley, H. Stern, and M. Truffer, 2008. Continued evolution of Jakobshavn Isbrae following its rapid speedup. J. Geophys. Res. 113 (F04006). doi: 10.1029/2008JF001023.
  • JoughinMacAyealTulaczyk:
    I. Joughin, D. R. MacAyeal, and S. Tulaczyk, 2004. Basal shear stress of the Ross ice streams from control method inversions. J. Geophys. Res. 109 (B09405). doi: 10.1029/2003JB002960.
  • Joughinetal2014:
    I. Joughin, B. Smith, and B. Medley, 2014. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344 (6185), 735–738.
  • Joughinetal2010-PIG:
    I. Joughin, B. E. Smith, and D. M. Holland, 2010. Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophysical Research Letters 37 (20).
  • Joughinetal2010:
    I. Joughin, B. E. Smith, I. M. Howat, T. Scambos, and T. Moon, 2010. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol. 56 (197), 415–430.
  • Joughinetal2009:
    I. Joughin, S. Tulaczyk, J. Bamber, D. Blankenship, J. Holt, T. Scambos, and D. Vaughan, 2009. Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using satellite and airborne data. J. Glaciol. 55 (190), 245–257.
  • JouvetBueler2012:
    G. Jouvet and E. Bueler, 2012. Steady, shallow ice sheets as obstacle problems: well-posedness and finite element approximation. SIAM J. Appl. Math. 72 (4), 1292–1314. doi: 10.1137/110856654.
  • Jouvetetal2012proc:
    G. Jouvet, E. Bueler, C. Gräser, and R. Kornhuber, 2013. A nonsmooth Newton multigrid method for a hybrid, shallow model of marine ice sheets. AMS Contemporary Mathematics (SCA 2012) 586, 197–205. doi: 10.1090/conm/586/11657.
  • JouvetRappaz2011:
    G. Jouvet and J. Rappaz, 2011. Analysis and finite element approximation of a nonlinear stationary Stokes problem arising in glaciology. Advances in Numerical Analysis 2011, 24 pages.
  • Jouvetetal2011:
    G. Jouvet, J. Rappaz, E. Bueler, and H. Blatter, 2011. Existence and stability of steady state solutions of the shallow ice sheet equation by an energy minimization approach. J. Glaciol. 57 (202), 345–354.
  • Kamb1987:
    B. Kamb, 1987. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res. 92 (B9), 9083–9100.
  • KarniadakisSherwin:
    G. Karniadakis and S. Sherwin, 2013. Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, 2nd edition.
  • Katzetal07:
    R. Katz, M. Knepley, B. Smith, M. Spiegelman, and E. Coon, 2007. Numerical simulation of geodynamic processes with the Portable Extensible Toolkit for Scientific computation. Phys. Earth Planet In. 163, 52–68.
  • Kelley:
    C. T. Kelley, 1987. Solving Nonlinear Equations with Newton's Method. Fundamentals of Algorithms. SIAM Press.
  • KhroulevLipscombBueler:
    C. Khroulev, W. Lipscomb, and E. Bueler, 2012. Developing a common coupling interface between ice-sheet and climate models. poster at International Glaciological Society symposium, Fairbanks, AK.
  • KinderlehrerStampacchia:
    D. Kinderlehrer and G. Stampacchia, 1980. An Introduction to Variational Inequalities and their Applications. Pure and Applied Mathematics. Academic Press.
  • KlemannWolf:
    V. Klemann and D. Wolf, 1999. Implications of a ductile crustal layer for the deformation caused by the Fennoscandian ice sheet. Geophys. J. Int. 139, 216–226.
  • KnollKeyes2004:
    D. A. Knoll and D. E. Keyes, 2004. Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comp. Phys. 193, 357–397.
  • Kondic:
    L. Kondic, 2003. Instabilities in gravity driven flow of thin fluid films. SIAM Rev. 45 (1), 95–115 (electronic).
  • Ladyzhenskaya:
    O. A. Ladyzhenskaya, 1963. The Mathematical Theory of Viscous Incompressible Flow. Revised English edition. Gordon and Breach Science Publishers, New York.
  • LangenSolgaardHvidberg2012:
    P. Langen, A. Solgaard, and C. Hvidberg, 2012. Self-inhibiting growth of the Greenland Ice Sheet. Geophys. Res. Lett. 39 (L12502). doi: 10.1029/2012GL051810.
  • LarouretalRonne:
    E. Larour, E. Rignot, I. Joughin, and D. Aubry, 2005. Rheology of the Ronne Ice Shelf, Antarctica, inferred from satellite radar interferometry data using an inverse control method. Geo. Res. Letters 32 (L05503). doi: 10.1029/2004GL021693.
  • Larouretal2012:
    E. Larour, H. Seroussi, M. Morlighem, and E. Rignot, 2012. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res. 117 (F01022). doi: 10.1029/2011JF002140.
  • Larsenetal:
    C. F. Larsen, R. J. Motyka, J. T. Freymuller, K. A. Echelmeyer, and E. R. Ivins, 2005. Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth Planet. Sci. Lett. 237, 548–560.
  • LayberryBamber:
    R. Layberry and J. Bamber, 2001. A new ice thickness and bed data set for the Greenland ice sheet 2: Relationship between dynamics and basal topography. J. Geophys. Res. 106 (D24), 33,781–33,788.
  • LeBrocqetal2009:
    A. Le Brocq, A. Payne, M. Siegert, and R. Alley, 2009. A subglacial water-flow model for West Antarctica. J. Glaciol. 55 (193), 879–888. doi: 10.3189/002214309790152564.
  • LeBrocqetal2010:
    A. M. Le Brocq, A. J. Payne, and A. Vieli, 2010. An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). Earth System Science Data 2 (2), 247–260. doi: 10.5194/essd-2-247-2010. https://www.earth-syst-sci-data.net/2/247/2010/.
  • Leguyetal2014:
    G. R. Leguy, X. S. Asay-Davis, and W. H. Lipscomb, 2014. Parameterization of basal friction near grounding lines in a one-dimensional ice sheet model. The Cryosphere 8, 1239–1259. doi: 10.5194/tc-8-1239-2014.
  • Lemieuxetal2011:
    J.-F. Lemieux, S. F. Price, K. J. Evans, D. Knoll, A. G. Salinger, D. M. Holland, and A. J. Payne, 2011. Implementation of the Jacobian-free Newton-Krylov method for solving the first-order ice sheet momentum balance. J. Computational Physics 230 (17), 6531 – 6545. doi: 10.1016/j.jcp.2011.04.037.
  • Lengetal2012:
    W. Leng, L. Ju, M. Gunzburger, S. Price, and T. Ringler, 2012. A parallel high-order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments. J. Geophys. Res. 117 (F01001). doi: 10.1029/2011JF001962.
  • Letreguillyetal1991:
    A. Letréguilly, P. Huybrechts, and N. Reeh, 1991. Steady-state characteristics of the Greenland ice sheet under different climates. J. Glaciol. 37 (125), 149–157.
  • LeVeque:
    R. J. LeVeque, 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press.
  • Levermann2011:
    A. Levermann, 2011. When glacial giants roll over. Nature 472, 43–44.
  • LewisPerkin1986:
    E. L. Lewis and R. G. Perkin, 1986. Ice pumps and their rates. Journal of Geophysical Research: Oceans 91 (C10), 11756–11762. ISSN 2156-2202. doi: 10.1029/JC091iC10p11756.
  • LeysingerVieliGudmundsson:
    G. J.-M. C. Leysinger Vieli and G. H. Gudmundsson, 2004. On estimating length fluctuations of glaciers caused by changes in climatic forcing. J. Geophys. Res. 109. doi: 10.1029/2003JF000027. F01007.
  • LingleBrown1987:
    C. S. Lingle and T. J. Brown, 1987. A subglacial aquifer bed model and water pressure-dependent basal sliding relationship for a West Antarctic ice stream. In C. J. V. der Veen and J. Oerlemans, editors, Dynamics of the West Antarctic Ice Sheet. D. Reidel.
  • LingleClark:
    C. S. Lingle and J. A. Clark, 1985. A numerical model of interactions between a marine ice sheet and the solid earth: Application to a West Antarctic ice stream. J. Geophys. Res. 90 (C1), 1100–1114.
  • LingleTroshina:
    C. S. Lingle and E. N. Troshina, 1998. Relative magnitudes of shear and longitudinal strain rates in the inland Antarctic ice sheet, and response to increasing accumulation. Ann. Glaciol. 27, 187–193.
  • LipenkovEtAl89:
    V. Lipenkov, N. I. Barkov, P. Duval, and P. Pimienta, 1989. Crystalline texture of the 2083 m ice core at Vostok Station, Antarctica. J. Glaciol. 35 (1), 392–398.
  • Livingstoneetal2013:
    S. J. Livingstone, C. D. Clark, J. Woodward, and J. Kingslake, 2013. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. The Cryosphere 7 (6), 1721–1740. doi: 10.5194/tc-7-1721-2013. https://www.the-cryosphere.net/7/1721/2013/.
  • LliboutryDuval1985:
    L. A. Lliboutry and P. Duval, 1985. Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies. Annales Geophys. 3, 207–224.
  • Luthckeetal2006:
    S. B. Luthcke, H. J. Zwally, W. Abdalati, DD. Rowlands, R. D. Ray, R. S. Nerem, F. G. Lemoine, J. J. McCarthy, and D. S. Chinn, 2006. Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations. Science 314 (5803), 1286–1289. doi: 10.1126/science.1130776.
  • Luethietal2009:
    M. Lüthi, M. Fahnestock, and M. Truffer, 2009. Correspondence: Calving icebergs indicate a thick layer of temperate ice at the base of Jakobshavn Isbrae, Greenland. J. Glaciol. 55 (191), 563–566.
  • Luethi2002:
    M. Lüthi, M. Funk, A. Iken, S. Gogineni, and M. Truffer, 2002. Mechanisms of fast flow in Jakobshavns Isbræ, Greenland; Part III: measurements of ice deformation, temperature and cross-borehole conductivity in boreholes to the bedrock. J. Glaciol. 48 (162), 369–385.
  • BEDMAP01:
    M. B. Lythe and D. G. Vaughan, 2001. BEDMAP: A new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res. 106 (B6), 11335–11351.
  • MacAyeal:
    D. R. MacAyeal, 1989. Large-scale ice flow over a viscous basal sediment: theory and application to ice stream B, Antarctica. J. Geophys. Res. 94 (B4), 4071–4087.
  • MacAyealtutorial:
    D. R. MacAyeal, 1993. A tutorial on the use of control methods in ice-sheet modeling. J. Glaciol. 39 (131), 91–98.
  • MacAyealBarcilon:
    D. R. MacAyeal and V. Barcilon, 1988. Ice-shelf response to ice-stream discharge fluctuations: I. Unconfined ice tongues. J. Glaciol. 34 (116), 121–127.
  • MacAyealetal:
    D. R. MacAyeal, V. Rommelaere, P. Huybrechts, C. Hulbe, J. Determann, and C. Ritz, 1996. An ice-shelf model test based on the Ross ice shelf. Ann. Glaciol. 23, 46–51.
  • Mahaffy:
    M. W. Mahaffy, 1976. A three–dimensional numerical model of ice sheets: tests on the Barnes Ice Cap, Northwest Territories. J. Geophys. Res. 81 (6), 1059–1066.
  • MarshallClarke97a:
    S. J. Marshall and G. K. C. Clarke, 1997. A continuum mixture model of ice stream thermomechanics in the Laurentide Ice Sheet: 1. Theory. J. Geophys. Res. 102 (B9), 20599–20613.
  • MarshallClarke97b:
    S. J. Marshall and G. K. C. Clarke, 1997. A continuum mixture model of ice stream thermomechanics in the Laurentide Ice Sheet: 2. Application to the Hudson Strait Ice Stream. J. Geophys. Res. 102 (B9), 20615–20637.
  • MarshallJamesClarke:
    S. J. Marshall, T. S. James, and G. K. C. Clarke, 2002. North American Ice Sheet reconstructions at the Last Glacial Maximum. Quaternary Sci. Rev. 21, 175–192.
  • MartinHindmarshNavarro2009:
    C. Martìn, R. Hindmarsh, and F. Navarro, 2009. On the effects of divide migration, along-ridge flow, and basal sliding on isochrones near an ice divide. J. Geophys. Res. (Earth Surface) 114 (F2). doi: 10.1029/2008JF001025.
  • Martinetal2011:
    M. A. Martin, R. Winkelmann, M. Haseloff, T. Albrecht, E. Bueler, C. Khroulev, and A. Levermann, 2011. The Potsdam Parallel Ice Sheet Model (PISM-PIK) –Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet. The Cryosphere 5, 727–740.
  • FoxMaule:
    C. F. Maule, M. E. Purucker, N. Olsen, and K. Mosegaard, 2005. Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science 309, 464–467.
  • Maxwelletal2008:
    D. Maxwell, M. Truffer, S. Avdonin, and M. Stuefer, 2008. An iterative scheme for determining glacier velocities and stresses. J. Glaciol. 54 (188), 888–898.
  • MengelLevermann2014:
    M. Mengel and A. Levermann, 2014. Ice plug prevents irreversible discharge from East Antarctica. Nature Clim. Change 4, 451–455. doi: 10.1038/nclimate2226.
  • Mercenier2018:
    R. Mercenier, M. P. Lüthi, and A. Vieli, feb 2018. Calving relation for tidewater glaciers based on detailed stress field analysis. The Cryosphere 12 (2), 721–739. ISSN 1994-0424. doi: 10.5194/tc-12-721-2018.
  • MetcalfReid:
    M. Metcalf and J. Reid, 1999. FORTRAN 90/95 Explained. Oxford University Press, second edition.
  • LeMeurHuybrechts:
    E. L. Meur and P. Huybrechts, 1996. A comparison of different ways of dealing with isostasy: examples from modeling the Antarctic ice sheet during the last glacial cycle. Annals of Glaciology 23, 309–317.
  • MolerVanLoan:
    C. Moler and C. Van Loan, 2003. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45 (1), 3–49 (electronic).
  • Moonetal2012:
    T. Moon, I. Joughin, B. Smith, and I. Howat, 2012. 21st-Century evolution of Greenland outlet glacier velocities. Science 336, 576–578. doi: 10.1126/science.1219985.
  • MooreKing08:
    P. Moore and M. A. King, 2008. Antarctic ice mass balance estimates from GRACE: Tidal aliasing effects. J. Geophys. Res. 113 (F02005). doi: 10.1029/2007JF000871.
  • Morland:
    L. W. Morland, 1987. Unconfined ice-shelf flow. In C. J. van der Veen and J. Oerlemans, editors, Dynamics of the West Antarctic ice sheet, 99–116. Kluwer Academic Publishers.
  • Morland97:
    L. W. Morland, 1997. Radially symmetric ice sheet flow. Phil. Trans. R. Soc. Lond. A 355, 1873–1904.
  • MorlandJohnson:
    L. W. Morland and I. R. Johnson, 1980. Steady motion of ice sheets. J. Glaciol. 25 (92), 229–246.
  • MorlandZainuddin:
    L. W. Morland and R. Zainuddin, 1987. Plane and radial ice-shelf flow with prescribed temperature profile. In C. J. van der Veen and J. Oerlemans, editors, Dynamics of the West Antarctic ice sheet, 117–140. Kluwer Academic Publishers.
  • Morlighem2016:
    M. Morlighem, J. Bondzio, H. Seroussi, E. Rignot, E. Larour, A. Humbert, and S. Rebuffi, 2016. Modeling of Store Gletscher's calving dynamics, West Greenland, in response to ocean thermal forcing. Geophysical Research Letters n/a–n/a. doi: 10.1002/2016GL067695. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL067695.
  • Morlighemetal2010:
    M. Morlighem, E. Rignot, H. Seroussi, E. Larour, H. B. Dhia, and D. Aubry, 2010. Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 37 (L14502). doi: 10.1029/2010GL043853.
  • MortonMayers:
    K. W. Morton and D. F. Mayers, 2005. Numerical Solutions of Partial Differential Equations: An Introduction. Cambridge University Press, 2nd edition.
  • tao-user-ref:
    T. Munson, J. Sarich, S. Wild, S. Benson, and L. C. McInnes, 2012. TAO 2.0 Users Manual. Technical Report ANL/MCS-TM-322, Mathematics and Computer Science Division, Argonne National Laboratory. https://www.mcs.anl.gov/research/projects/tao/.
  • NocedalWright:
    J. Nocedal and S. Wright, 1999. Numerical Optimization. Springer.
  • Nowicki2013AntarcticaSeaRISE:
    S. Nowicki et al., 2013. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project: I. Antarctica. J. Geophys. Res.: Earth Surface 118 (2), 1002–1024. doi: 10.1002/jgrf.20081.
  • Nowicki2013GreenlandSeaRISE:
    S. Nowicki et al., 2013. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project: II. Greenland. J. Geophys. Res.: Earth Surface 118 (2), 1025–1044. doi: 10.1002/jgrf.20076.
  • Nye52:
    J. F. Nye, 1952. The mechanics of glacier flow. J. Glaciol. 2 (2), 82–93.
  • Nye52plastic:
    J. F. Nye, 1952. A method of calculating the thicknesses of the ice-sheets. Nature 169 (4300), 529–530.
  • Nye:
    J. F. Nye, 1957. The distribution of stress and velocity in glaciers and ice-sheets. Proc. Royal Soc. London A 239, 113–133.
  • Nye1976:
    J. F. Nye, 1976. Water flow in glaciers: Jökulhlaups, tunnels and veins. J. Glaciol. 17 (76), 181–207.
  • Nye00:
    J. F. Nye, 2000. A flow model for the polar caps of Mars. J. Glaciol. 46 (154), 438–444.
  • NyeIcarus2000:
    J. F. Nye, W. B. Durham, P. M. Schenk, and J. M. Moore, 2000. The instability of a South Polar Cap on Mars composed of carbon dioxide. Icarus 144, 449–455. doi: 10.1006/icar.1999.6306.
  • Ockendonetal2003:
    J. Ockendon, S. Howison, A. Lacey, and S. Movchan, 2003. Applied Partial Differential Equations. Oxford University Press, revised edition.
  • OerlemansVeen:
    H. Oerlemans and C. J. van der Veen, 1984. Ice Sheets and Climate. D. Reidel.
  • Oerlemansetal:
    J. Oerlemans et al., 1998. Modelling the response of glaciers to climate warming. Climate Dynamics 14, 267–274.
  • Oerlemans2008minimal:
    J. H. Oerlemans, 2008. Minimal Glacier Models. Igitur, Utrecht Publishing & Archiving Services, Utrecht.
  • Ohmura87:
    A. Ohmura, 1987. New temperature distribution maps for Greenland. Z. Gletscherkd. Glazialgeol. 23 (1), 1–45.
  • OhmuraReeh:
    A. Ohmura and N. Reeh, 1991. New precipitation and accumulation maps for Greenland. J. Glaciol. 37 (125), 140–148.
  • OlbersHellmer2010:
    D. Olbers and H. Hellmer, 2010. A box model of circulation and melting in ice shelf caverns. Ocean Dynamics 60 (1), 141–153.
  • Oreskesetal94:
    N. Oreskes, K. Shrader-Frechette, and K. Belitz, 1994. Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences. Science 263 (5147), 641–646.
  • Orowan:
    E. Orowan, 1949. Discussion. J. Glaciol. 1 (5), 231–236.
  • PaigeSaunders1982:
    C. Paige and M. Saunders, 1982. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software 8 (1), 43–71.
  • Parker:
    R. Parker, 1994. Geophysical Inverse Theory. Princeton University Press.
  • Parreninetal2006:
    F. Parrenin, R. Hindmarsh, and F. Remy, 2006. Analytical solutions for the effect of topography, accumulation rate and lateral flow divergence on isochrone layer geometry. J. Glaciol. 52 (177), 191–202.
  • Parreninetal04:
    F. Parrenin, F. Remy, C. Ritz, M. J. Siegert, and J. Jouzel, 2004. New modeling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core. J. Geophys. Res. 109, D20102. doi: 10.1029/2004JD004561.
  • Paterson:
    W. S. B. Paterson, 1994. The Physics of Glaciers. Pergamon, 3rd edition.
  • PatersonBudd:
    W. S. B. Paterson and W. F. Budd, 1982. Flow parameters for ice sheet modeling. Cold Reg. Sci. Technol. 6 (2), 175–177.
  • Pattyn03:
    F. Pattyn, 2003. A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res. 108 (B8). doi: 10.1029/2002JB002329.
  • PattynDeBrabanderHuyghe:
    F. Pattyn, S. D. Brabander, and A. Huyghe, 2005. Basal and thermal control mechanisms of the Ragnhild glaciers, East Antarctica. Ann. Glaciol. 40, 225–231.
  • MISMIP3d2013:
    F. Pattyn, L. Perichon, G. Durand, et al., 2013. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. J. Glaciol. 59 (215), 410–422.
  • MISMIP2012:
    F. Pattyn, C. Schoof, L. Perichon, et al., 2012. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. The Cryosphere 6, 573–588. doi: 10.5194/tc-6-573-2012.
  • PattynDeSmedtSouchez:
    F. Pattyn, B. D. Smedt, and R. Souchez, 2004. Influence of subglacial Lake Vostok on the regional ice dynamics of the Antarctic ice sheet: a model study. J. Glaciol. 50 (171), 583–589.
  • ISMIPHOM:
    F. Pattyn et al., 2008. Benchmark experiments for higher-order and full Stokes ice sheet models (ISMIP-HOM). The Cryosphere 2, 95–108.
  • EISMINT00:
    A. Payne et al., 2000. Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. J. Glaciol. 153, 227–238.
  • PayneBaldwin:
    A. J. Payne and D. J. Baldwin, 2000. Analysis of ice–flow instabilities identified in the EISMINT intercomparison exercise. Ann. Glaciol. 30, 204–210.
  • PayneDongelmans:
    A. J. Payne and P. W. Dongelmans, 1997. Self–organization in the thermomechanical flow of ice sheets. J. Geophys. Res. 102 (B6), 12219–12233.
  • Pegleretal2013:
    S. S. Pegler, K. Kowal, L. Hasenclever, and M. G. Worster, 2013. Lateral controls on grounding-line dynamics. J. Fluid Mech. 722, R1.
  • PeglerListerWorster2012:
    S. S. Pegler, J. R. Lister, and M. G. Worster, 2012. Release of a viscous power-law fluid over an inviscid ocean. J. Fluid Mech. 700, 63–76. doi: 10.1017/jfm.2012.91.
  • PeglerWorster2012:
    S. S. Pegler and M. G. Worster, 2012. Dynamics of a viscous layer flowing radially over an inviscid ocean. J. Fluid Mech. 696, 152–174. doi: 10.1017/jfm.2012.21.
  • PelissierReynaud:
    M. C. Pélissier and L. Reynaud, 1974. Ètude d'un modéle d'ècoulement de glacier. C. R. Acad. Sci. Paris 279 (13), 531–534.
  • Peltier:
    W. R. Peltier, 1974. The impulse response of a Maxwell earth. Rev. Geophys. Space Phys. 12, 649–669.
  • Peltier1998review:
    W. R. Peltier, 1998. Postglacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics. Rev. Geophys. 36 (4), 603–689.
  • Peltieretal:
    W. R. Peltier, D. L. Goldsby, D. L. Kohlstedt, and L. Tarasov, 2000. Ice–age ice–sheet rheology: constraints from the last Glacial Maximum form of the Laurentide ice sheet. Ann. Glaciol. 30, 163–176.
  • Peyret:
    R. Peyret, 2002. Spectral Methods for Incompressible Viscous Flow, volume 148 of Applied Mathematical Sciences. Springer.
  • Pfefferetal2008:
    W. T. Pfeffer, J. T. Harper, and S. O'Neel, 2008. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321, 1340–1343.
  • PhillipsRajaramSteffan2010:
    T. Phillips, H. Rajaram, and K. Steffen, 2010. Cryo-hydrologic warming: A potential mechanism for rapid thermal response of ice sheets. Geophy. Res. Lett. 37 (20), 1–5. doi: 10.1029/2010GL044397.
  • Picassoetal04:
    M. Picasso, J. Rappaz, A. Reist, M. Funk, and H. Blatter, 2004. Numerical simulation of the motion of a two-dimensional glacier. Internat. J. Numer. Methods Engrg. 60 (5), 995–1009.
  • PierceValid:
    D. W. Pierce, 2004. Beyond the Means: Validating Climate Models with Higher-Order Statistics. Computing in Science and Engineering 6 (5), 22–29.
  • PimentelFlowers2011:
    S. Pimentel and G. Flowers, 2011. A numerical study of hydrologically driven glacier dynamics and subglacial flooding. Proc. R. Soc. A 467, 537–558. doi: 10.1098/rspa.2010.0211.
  • PimentelFlowersSchoof2010:
    S. Pimentel, G. Flowers, and C. Schoof, 2010. A hydrologically coupled higher-order flow-band model of ice dynamics with a Coulomb friction sliding law. J. Geophys. Res. 115 (F04023). doi: 10.1029/2009JF001621.
  • pism-installation-manual:
    PISM authors, 2013. PISM, a Parallel Ice Sheet Model: Installation Manual. http://www.pism-docs.org.
  • Pollacketal:
    H. N. Pollack, S. J. Hurter, and J. R. Johnson, 1993. Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys. 31 (3), 267–280.
  • PollardDeConto:
    D. Pollard and R. M. DeConto, 2007. A coupled ice-sheet/ice-shelf/sediment model applied to a marine-margin flowline: Forced and unforced variations. In M. J. Hambrey et al., editors, Glacial Sedimentary Processes and Products. Blackwell Publishing Ltd. Special Publication Number 39 of the International Association of Sedimentologists.
  • PollardDeConto2009WAIS:
    D. Pollard and R. M. DeConto, 2009. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–333. doi: 10.1038/nature07809.
  • PostLaChapelle:
    A. Post and E. R. LaChapelle, 2000. Glacier Ice. University of Washington Press and International Glaciological Society, revised edition.
  • PralongFunk:
    A. Pralong and M. Funk, 2005. Dynamic damage model of crevasse opening and application to glacier calving. J. Geophys. Res. 110 (B01309). doi: 10.1029/2004JB003104.
  • Pressetal:
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 2nd edition.
  • Priceetal2011:
    S. Price, A. Payne, I. Howat, and B. Smith, 2011. Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Nat. Acad. Sci. 108 (22), 8978–8983. doi: 10.1073/pnas.1017313108.
  • Pritchardetal2010:
    H. D. Pritchard, S. Luthcke, and A. Fleming, 2010. Understanding ice-sheet mass balance: progress in satellite altimetry and gravimetry. J. Glaciol. 56 (200), 1151–1161.
  • Rahmstorfetal2007:
    S. Rahmstorf et al., 2007. Recent climate observations compared to projections. Science 316 (5825), 709. doi: 10.1126/science.1136843.
  • RappazReist05:
    J. Rappaz and A. Reist, 2005. Mathematical and numerical analysis of a three-dimensional fluid flow model in glaciology. Math. Models Methods Appl. Sci. (M3AS) 15 (1), 37–52.
  • Raviart:
    P. A. Raviart, 1970. Sur la rèsolution de certaines equations paraboliques non linèaires. J. Functional Anal. 5, 299–328.
  • Raymond1971:
    C. F. Raymond, 1971. Determination of the three-dimensional velocity field in a glacier. J. Glaciol. 10 (58), 39–53.
  • Raymondenergy:
    C. F. Raymond, 2000. Energy balance of ice streams. J. Glaciol. 46 (155), 665–647.
  • ReedSimon:
    M. Reed and B. Simon, 1980. Methods of Modern Mathematical Physics I. Academic Press, 2nd edition.
  • Reehetal:
    N. Reeh, E. L. Christensen, C. Mayer, and O. B. Olesen, 2003. Tidal bending of glaciers: a linear viscoelastic approach. Ann. Glaciol. 37 (1), 83–89.
  • ReeseAlbrecht2018:
    R. Reese, T. Albrecht, M. Mengel, X. Asay-Davis, and R. Winkelmann, 2018. Antarctic sub-shelf melt rates via PICO. The Cryosphere 12 (6), 1969–1985. doi: 10.5194/tc-12-1969-2018. https://www.the-cryosphere.net/12/1969/2018/.
  • Reynaud:
    L. Reynaud, 1973. Flow of a valley glacier with a solid friction law. J. Glaciol. 12 (65), 251–258.
  • RignotKanagaratnam2008:
    E. Rignot and P. Kanagaratnam, 2008. Changes in the velocity structure of the Greenland Ice Sheet. Science 311, 986–990. doi: 10.1126/science.1121381.
  • Rignotetal2011:
    E. Rignot, J. Mouginot, and B. Scheuchl, 2011. Ice flow of the Antarctic Ice Sheet. Science 333 (6048), 1427–1430. doi: 10.1126/science.1208336.
  • Rignotetal2016:
    E. Rignot, Y. Xu, D. Menemenlis, J. Mouginot, B. Scheuchl, X. Li, M. Morlighem, H. Seroussi, M. v. den Broeke, I. Fenty, C. Cai, L. An, and B. d. Fleurian, 2016. Modeling of ocean-induced ice melt rates of five west Greenland glaciers over the past two decades. Geophysical Research Letters 43 (12), 6374–6382. doi: 10.1002/2016GL068784.
  • RitzFabreLetreguilly:
    C. Ritz, A. Fabre, and A. Letrèguilly, 1997. Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: consequences for the evolution through the last glacial cycle. Climate Dyn. 13 (1), 11–24.
  • Ritzetal2001:
    C. Ritz, V. Rommelaere, and C. Dumas, 2001. Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region. J. Geophys. Res. 106 (D23), 31943–31964.
  • Roache:
    P. Roache, 1998. Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque, New Mexico.
  • RoacheCSE:
    P. J. Roache, 2004. Building PDE codes to be Verifiable and Validatable. Computing in Science and Engineering 6 (5), 30–38.
  • ASMEJFE:
    P. J. Roache, K. Ghia, and F. White, 1986. Editorial policy statement on the control of numerical accuracy. ASME Journal of Fluids Engineering 108 (1), 2.
  • Robeletal2014:
    A. Robel, C. Schoof, and E. Tziperman, 2014. Rapid grounding line migration induced by internal ice stream variability. Journal of Geophysical Research: Earth Surface 119 (11), 2430–2447.
  • Rodrigues:
    J. Rodrigues, 1987. Obstacle Problems in Mathematical Physics, volume 134 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam.
  • RodriguesUrbano:
    J. F. Rodrigues and J. M. Urbano, 1999. On the mathematical analysis of a valley glacier model. In Free Boundary Problems: Theory and Applications, volume 409 of CRC Res. Notes Math., 237–245. Chapman & Hall.
  • RogozhinaRau2014:
    I. Rogozhina and D. Rau, 2014. Vital role of daily temperature variability in surface mass balance parameterizations of the Greenland Ice Sheet. The Cryosphere 8, 575–585. doi: 10.5194/tc-8-575-2014.
  • RommelaereMacAyeal:
    V. Rommelaere and D. R. MacAyeal, 1997. Large-scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method. Ann. Glaciol. 24, 43–48.
  • Saad:
    Y. Saad, 2003. Iterative Methods for Sparse Linear Systems. SIAM Press, second edition.
  • SaitoAbeOuchi:
    F. Saito and A. Abe-Ouchi, 2005. Sensitivity of Greenland ice sheet simulation to the numerical procedure employed for ice-sheet dynamics. Ann. Glaciol. 42 (1), 331–336.
  • SaitoEISMINT:
    F. Saito, A. Abe-Ouchi, and H. Blatter, 2006. European Ice Sheet Modelling Initiative (EISMINT) model intercomparison experiments with first-order mechanics. J. Geophys. Res. 111 (F02012). doi: 10.1029/2004JF000273.
  • SaitoMargin:
    F. Saito, A. Abe-Ouchi, and H. Blatter, 2007. An improved numerical scheme to compute horizontal gradients at the ice-sheet margin: its effect on the simulated ice thickness and temperature. Ann. Glaciol. 46, 87–96.
  • SargentFastook2010:
    A. Sargent and J. L. Fastook, 2010. Manufactured analytical solutions for isothermal full-Stokes ice sheet models. The Cryosphere 4 (3), 285–311. doi: 10.5194/tc-4-285-2010. https://www.the-cryosphere.net/4/285/2010/.
  • SavagePaterson:
    J. C. Savage and W. S. B. Paterson, 1963. Borehole measurements in the Athabasca Glacier. J. Geophys. Res. 68, 4521–4536.
  • SayagPeglerWorster2012:
    R. Sayag, S. S. Pegler, and M. G. Worster, 2012. Floating extensional flows. Physics of Fluids 24 (9). doi: 10.1063/1.4747184.
  • SayagWorster2013:
    R. Sayag and M. G. Worster, 2013. Axisymmetric gravity currents of power-law fluids over a rigid horizontal surface. J. Fluid Mech. 716. doi: 10.1017/jfm.2012.545.
  • Scambosetal2005:
    T. Scambos, O. Sergienko, A. Sargent, D. MacAyeal, and J. Fastook, 2005. ICESat profiles of tabular iceberg margins and iceberg breakup at low latitudes. Geophys. Res. Let. 32 (L23S09). doi: 10.1029/2005GL023802.
  • Schey:
    H. M. Schey, 2005. div, grad, curl, and all that: an informal text on vector calculus. W. W. Norton, 4th edition.
  • Schoofformdrag2002:
    C. Schoof, 2002. Basal perturbations under ice streas: form drag and surface expression. J. Glaciol. 48 (162), 407–416.
  • Schoofbasaltopg2003:
    C. Schoof, 2003. The effect of basal topography on ice sheet dynamics. Continuum Mech. Thermodyn. 15, 295–307. doi: 10.1007/s00161-003-0119-3.
  • SchoofMargins:
    C. Schoof, 2004. On the mechanics of ice-stream shear margins. J. Glaciol. 50 (169), 208–218.
  • Schoof2005cavitation:
    C. Schoof, 2005. The effect of cavitation on glacier sliding. Proc. R. Soc. A 461, 609–627. doi: 10.1098/rspa.2004.1350.
  • SchoofStream:
    C. Schoof, 2006. A variational approach to ice stream flow. J. Fluid Mech. 556, 227–251.
  • SchoofTill:
    C. Schoof, 2006. Variational methods for glacier flow over plastic till. J. Fluid Mech. 555, 299–320.
  • Schoof2007deformable:
    C. Schoof, 2007. Cavitation on deformable glacier beds. SIAM J. Appl. Math. 67 (6), 1633–1653.
  • Schoofmarinedynamics:
    C. Schoof, 2007. Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J. Geophys. Res. 112. doi: 10.1029/2006JF000664. F03S28.
  • SchoofMarine1:
    C. Schoof, 2007. Marine ice-sheet dynamics. Part 1. The case of rapid sliding. J. Fluid Mech. 573, 27–55.
  • SchoofCoulombBlatter:
    C. Schoof, 2010. Coulomb friction and other sliding laws in a higher order glacier flow model. Math. Models Methods Appl. Sci. (M3AS) 20, 157–189. doi: 10.1142/S0218202510004180.
  • Schoofmeltsupply:
    C. Schoof, 2010. Ice sheet acceleration driven by melt supply variability. Nature 468 (7325), 803–806.
  • SchoofMarine2:
    C. Schoof, 2011. Marine ice sheet dynamics. Part 2: A Stokes Flow contact problem. J. Fluid Mech. 679, 122–255.
  • SchoofHewitt2013:
    C. Schoof and I. J. Hewitt, 2013. Ice-sheet dynamics. Annu. Rev. Fluid Mech. 45, 217–239.
  • Schoofetal2012:
    C. Schoof, I. J. Hewitt, and M. A. Werder, 2012. Flotation and free surface flow in a model for subglacial drainage. Part I: Distributed drainage. J. Fluid Mech. 702, 126–156.
  • SchoofHindmarsh:
    C. Schoof and R. Hindmarsh, 2010. Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Quart. J. Mech. Appl. Math. 63 (1), 73–114. doi: 10.1093/qjmam/hbp025.
  • Seguinot2013:
    J. Seguinot, 2013. Spatial and seasonal effects of temperature variability in a positive degree day surface melt model. J. Glaciol. 59 (218), 1202–1204. doi: 10.3189/2013JoG13J081.
  • SeguinotRogozhina2014:
    J. Seguinot and I. Rogozhina, 2014. Daily temperature variability predetermined by thermal conditions over ice sheet surfaces. J. Glaciol. doi: 10.3189/2014JoG14J036.
  • ShepardWingham:
    A. Shepard and D. Wingham, 2007. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315, 1529–1532. doi: 10.1126/science.1136776.
  • Shewchuk1996:
    J. R. Shewchuk, 1996. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In M. Lin and D. Manocha, editors, Applied Computational Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer Science, 203–222. Springer-Verlag.
  • Shreve1972:
    R. Shreve, 1972. Movement of water in glaciers. J. Glaciol 11 (62), 205–214.
  • Siegertetal2007:
    M. Siegert, A. Le Brocq, and A. Payne, 2007. Hydrological connections between Antarctic subglacial lakes, the flow of water beneath the East Antarctic Ice Sheet and implications for sedimentary processes, 3–10. Wiley-Blackwell, Malden, MA, USA.
  • NPARCTutorial:
    J. W. Slater, 2001. Tutorial on CFD Verification and Validation. Web site tutorial, NPARC Alliance. https://www.grc.nasa.gov/WWW/wind/valid/tutorial/tutorial.html, much of the material follows AIAA G-077-1998, "Guide for the Verification and Validation of Computational Fluid Dynamics Simulations.".
  • Smithetal1996:
    B. Smith, P. Bjorstad, and W. Gropp, 1996. Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press.
  • SmithMorland:
    G. Smith and L. Morland, 1981. Viscous relations for the steady creep of polycrytalline ice. Cold. Reg. Sci. Tech. 5, 141–150.
  • SmithBarstad2004:
    R. B. Smith and I. Barstad, 2004. A linear theory of orographic precipitation. Journal of the Atmospheric Sciences 61 (12), 1377–1391.
  • SmithBarstadBonneau2005:
    R. B. Smith, I. Barstad, and L. Bonneau, 2005. Orographic precipitation and Oregon’s climate transition. Journal of the Atmospheric Sciences 62 (1), 177–191.
  • Sneddon:
    I. N. Sneddon, 1951. Fourier Transforms. McGraw-Hill Book Company, New York.
  • SolgaardLangen2012:
    A. Solgaard and P. Langen, 2012. Multistability of the Greenland ice sheet and the effects of an adaptive mass balance formulation. Climate Dynamics doi: 10.1007/s00382-012-1305-4.
  • Solgaardetal2011:
    A. Solgaard, N. Reeh, P. Japsen, and T. Nielsen, 2011. Snapshots of the Greenland ice sheet configuration in the Pliocene to early Pleistocene. Journal of Glaciology 57 (205), 871–880. doi: 10.3189/002214311798043816.
  • Sorensenetal2011:
    L. S. Sorensen, S. B. Simonsen, et al., 2011. Mass balance of the Greenland ice sheet (2003-2008) from ICESat data - the impact of interpolation, sampling and firn density. The Cryosphere 5 (1), 173–186. doi: 10.5194/tc-5-173-2011. https://www.the-cryosphere.net/5/173/2011/.
  • Strikwerda:
    J. C. Strikwerda, 1989. Finite Difference Schemes and Partial Differential Equations. Wadsworth, Pacific Grove, California.
  • Tarantola:
    A. Tarantola, 2004. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM Press.
  • Tarasovetal2011:
    L. Tarasov, A. S. Dyke, R. M. Neal, and W. R. Peltier, 2011. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett. In press.
  • TarasovPeltier:
    L. Tarasov and W. R. Peltier, 2002. Greenland glacial history and local geodynamic consequences. Geophys. J. Int. 150, 198–229.
  • TarasovPeltier2004:
    L. Tarasov and W. R. Peltier, 2004. A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex. Quaternary Science Reviews 23, 359–388.
  • Thorsteinsson2001:
    T. Thorsteinsson, 2001. An analytical approach to deformation of anisotropic ice-crystal aggregates. J. Glaciol. 47 (158), 507–516.
  • Trefethen:
    L. N. Trefethen, 2000. Spectral Methods in MATLAB. SIAM Press.
  • Trefethen2013:
    L. N. Trefethen, 2013. Approximation Theory and Approximation Practice. SIAM Press.
  • TrefethenBau:
    L. N. Trefethen and D. Bau, 1997. Numerical Linear Algebra. SIAM Press.
  • TrufferEchelmeyer:
    M. Truffer and K. Echelmeyer, 2003. Of isbrae and ice streams. Ann. Glaciol. 36 (1), 66–72.
  • TrufferHarrisonEchelmeyer2000:
    M. Truffer, K. Echelmeyer, and W. Harrison, 2000. Glacier motion dominated by processes deep in underlying till. J. Glaciol. 46 (153), 213–221.
  • TrufferEchelmeyerHarrison2001:
    M. Truffer, K. Echelmeyer, and W. Harrison, 2001. Implications of till deformation on glacier dynamics. J. Glaciol. 47 (156), 123–134. doi: 10.3189/172756501781832449.
  • TrufferFahnestock:
    M. Truffer and M. Fahnestock, 2007. Rethinking ice sheet time scales. Science 315 (5818), 1508–1510. doi: 10.1126/science.1140469.
  • TrufferHarrison2006:
    M. Truffer and W. Harrison, 2006. In situ measurements of till deformation and water pressure. J. Glaciol. 52 (177), 175–182.
  • Tulaczyketal2000:
    S. Tulaczyk, W. B. Kamb, and H. F. Engelhardt, 2000. Basal mechanics of Ice Stream B, West Antarctica 1. Till mechanics. J. Geophys. Res. 105 (B1), 463–481.
  • Tulaczyketal2000b:
    S. Tulaczyk, W. B. Kamb, and H. F. Engelhardt, 2000. Basal mechanics of Ice Stream B, West Antarctica 2. Undrained plastic bed model. J. Geophys. Res. 105 (B1), 483–494.
  • vandeWal2008:
    R. S. W. van de Wal, W. Boot, M. R. van den Broeke, C. J. P. P. Smeets, C. H. Reijmer, J. J. A. Donker, and J. Oerlemans, 2008. Large and Rapid Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice Sheet. Science 321 (5885), 111–113. doi: 10.1126/science.1158540.
  • vandenBroeke2009:
    M. R. van den Broeke, J. L. Bamber, J. Ettema, E. Rignot, E. Schrama, W. J. van de Berg, E. van Meijgaard, I. Velicogna, and B. Wouters, 2009. Partitioning recent Greenland mass loss. Science 326 (5955), 984–986. doi: 10.1126/science.1178176.
  • vanderVeen83:
    C. J. van der Veen, 1983. A note on the equilibrium profile of a free floating ice shelf. IMAU Report V83-15. State University Utrecht, Utrecht.
  • vanderVeen85:
    C. J. van der Veen, 1985. Response of a marine ice sheet to changes at the grounding line. Quat. Res. 24, 257–267.
  • vanderVeenEval99:
    C. J. van der Veen, 1999. Evaluating the performance of cryospheric models. Polar Geography 23 (2), 83–96.
  • vanderVeen:
    C. J. van der Veen, 2013. Fundamentals of Glacier Dynamics. CRC Press, 2nd edition.
  • vanderVeenetal2001precip:
    C. J. van der Veen, D. H. Bromwich, B. Csatho, and C. Kim, 2001. Trend analysis of Greenland precipitation. J. Geophys. Res. 106 (D24), 33909–33918.
  • vanderVeenPayne:
    C. J. van der Veen and A. J. Payne, 2004. Modelling land-ice dynamics. In J. L. Bamber and A. J. Payne, editors, Mass Balance of the Cryosphere: Observations and Modelling of Contemporary and Future Changes, 169–225. Cambridge University Press.
  • vanderVeenWhillans1996:
    C. J. van der Veen and I. M. Whillans, 1996. Model experiments on the evolution and stability of ice streams. Ann. Glaciol. 23, 129–137.
  • vanderWeletal2013:
    N. van der Wel, P. Christoffersen, and M. Bougamont, 2013. The influence of subglacial hydrology on the flow of Kamb Ice Stream, West Antarctica. J. Geophys. Res.: Earth Surface 118, 1–14. doi: 10.1029/2012JF002570.
  • vanPeltthesis:
    W. van Pelt, 2013. Modelling the dynamics and boundary processes of Svalbard glaciers. Ph.D. thesis, Institute for Marine and Atmospheric Research Utrecht (IMAU), The Netherlands.
  • vanPeltetal:
    W. van Pelt, J. Oerlemans, C. Reijmer, V. Pohjola, R. Pettersson, and J. H. van Angelen, 2012. Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model. The Cryosphere 6 (3), 641–659. doi: 10.5194/tc-6-641-2012. https://www.the-cryosphere.net/6/641/2012/.
  • vanPeltOerlemans2012:
    W. J. J. van Pelt and J. Oerlemans, 2012. Numerical simulations of cyclic behaviour in the Parallel Ice Sheet Model (PISM). Journal of Glaciology 58 (208), 347–360. doi: 10.3189/2012JoG11J217. https://www.igsoc.org/journal/58/208/t11J217.pdf.
  • vanPeltetal2013:
    W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, R. Pettersson, V. A. Pohjola, E. Isaksson, and D. Divine, 2013. An iterative inverse method to estimate basal topography and initialize ice flow models. The Cryosphere 7 (3), 987–1006. doi: 10.5194/tc-7-987-2013.
  • Vaughanetal99:
    D. Vaughan, J. Bamber, M. Giovinetto, J. Russell, and A. P. Cooper, 1999. Reassessment of net surface mass balance in Antarctica. J. Climate 12, 933–946.
  • VaughanArthern:
    D. G. Vaughan and R. Arthern, 2007. Why is it hard to predict the future of ice sheets?. Science 315 (5818), 1503–1504. doi: 10.1126/science.1141111.
  • Vazquezetal2003:
    C. Vàzquez, E. Schiavi, J. Durany, J. I. Dìaz, and N. Calvo, 2003. On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics. SIAM J. Appl. Math. 63 (2), 683–707. doi: 10.1137/S0036139901385345.
  • VazquezOldPME:
    J. L. Vazquez, 1992. An introduction to the mathematical theory of the porous medium equation. In Delfour, editor, Shape Optimization and Free Boundaries. Kluwer.
  • VazquezPME:
    J. L. Vàzquez, 2007. The Porous Medium Equation. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford.
  • VelicognaWahr06:
    I. Velicogna and J. Wahr, 2006. Measurements of time-variable gravity show mass loss in Antarctica. Science 311 (5768), 1754–1756. doi: 10.1126/science.1123785.
  • Vialov:
    S. S. Vialov, 1958. Regularities of glacial shields movement and the theory of plastic viscous flow. In International Association of Scientific Hydrology Publication 47 (Symposium at Chamonix 1958—Physics of the movement of ice), 266–275.
  • VieliPayne:
    A. Vieli and A. J. Payne, 2005. Assessing the ability of numerical ice sheet models to simulate grounding line migration. J. Geophysical Research 110. doi: 10.1029/2004JF000202. F01003.
  • Vogel:
    C. R. Vogel, 2002. Computational Methods for Inverse Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
  • Waddington:
    E. D. Waddington, 1981. Accurate modelling of glacier flow. Ph.D. thesis, University of British Columbia.
  • Walder1982:
    J. S. Walder, 1982. Stability of sheet flow of water beneath temperate glaciers and implications for glacier surging. J. Glaciol. 28 (99), 273–293.
  • Wangetal2013:
    Q. Wang, S. Danilov, D. Sidorenko, R. Timmermann, C. Wekerle, X. Wang, T. Jung, and J. Schröter, July 2013. The Finite Element Sea ice-Ocean Model (FESOM): formulation of an unstructured-mesh ocean general circulation model. Geoscientific Model Development Discussions 6, 3893–3976. doi: 10.5194/gmdd-6-3893-2013.
  • Watson:
    G. N. Watson, 1966. A Treatise on the Theory of Bessel Functions. Cambridge University Press, New York.
  • Weertman61stability:
    J. Weertman, 1961. Stability of ice-age ice sheets. J. Geophys. Res. 66, 3783–3792.
  • Weertman:
    J. Weertman, 1964. The theory of glacier sliding. J. Glaciol. 5, 287–303.
  • WeisGreveHutter:
    M. Weis, R. Greve, and K. Hutter, 1999. Theory of shallow ice shelves. Continuum Mech. Thermodyn. 11 (1), 15–50.
  • Werderetal2013:
    M. Werder, I. Hewitt, C. Schoof, and G. Flowers, 2013. Modeling channelized and distributed subglacial drainage in two dimensions. J Geophys. Res.: Earth Surface 118 (4), 2140–2158.
  • Wesseling:
    P. Wesseling, 2001. Principles of Computational Fluid Dynamics. Springer-Verlag.
  • Winkelmannetal2012:
    R. Winkelmann, A. Levermann, K. Frieler, and M. Martin, 2012. Increased future ice discharge from Antarctica owing to higher snowfall. Nature 492, 239–242.
  • Winkelmannetal2011:
    R. Winkelmann, M. A. Martin, M. Haseloff, T. Albrecht, E. Bueler, C. Khroulev, and A. Levermann, 2011. The Potsdam Parallel Ice Sheet Model (PISM-PIK) Part 1: Model description. The Cryosphere 5, 715–726.
  • Wunsch1996:
    C. Wunsch, 1996. The Ocean Circulation Inverse Problem. Cambridge University Press.
  • Xu2013:
    Y. Xu, E. Rignot, I. Fenty, D. Menemenlis, and M. M. Flexas, 2013. Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophysical Research Letters 40 (17), 4648–4653. doi: 10.1002/grl.50825.
  • Zwallyetal02:
    H. J. Zwally, W. Abdalati, T. Herring, K. Larson, J. Saba, and K. Steffen, 2002. Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297 (5579), 218–222. doi: 10.1126/science.1072708.
  • ZwallyGiovinetto2001:
    H. J. Zwally and M. B. Giovinetto, 2001. Balance mass flux and ice velocity across the equilibrium line in drainage systems of Greenland. J. Geophys. Res. 106 (D24), 33717–33728. doi: 10.1029/2001JD900120.
  • ZweckHuybrechts:
    C. Zweck and P. Huybrechts, 2005. Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. J. Geophysical Research 110. doi: 10.1029/2004JD005489. D07103.
  • Zwingeretal07:
    T. Zwinger, R. Greve, O. Gagliardini, T. Shiraiwa, and M. Lyly, 2007. A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka. Ann. Glaciol. 45 (1), 29–37.